Step of Proof: l_before_transitivity
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
l
before
transitivity
:
1.
T
: Type
2.
l
:
T
List
3.
x
:
T
4.
y
:
T
5.
z
:
T
6. no_repeats(
T
;
l
)
7. [
x
;
y
]
l
8. [
y
;
z
]
l
[
x
;
z
]
[
x
;
y
;
z
]
latex
by
InteriorProof
((((((((((((((RWO "cons_sublist_cons" 0)
CollapseTHEN ((Auto_aux (first_nat 1:n
CollapseTHEN ((Aut
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN ((Aut)
CollapseTHEN (OrLeft))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat
CollapseTHEN ((Aut
1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (
CollapseTHEN (
RWO "cons_sublist_cons" 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
CollapseTHEN ((Aut
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN ((Aut)
CollapseTHEN (OrRight))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat
CollapseTHEN ((Aut
1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
[
z
]
[
z
]
C
.
Definitions
,
{
T
}
,
P
&
Q
,
P
Q
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
Lemmas
sublist
wf
,
cons
sublist
cons
origin